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ABSTRACT 

 

Noise corruption is the main role played in pulling back the image processing technology 
useless. So analysis and how to mitigate the noise in 2D images would be very worth in medical 

image processing, satellite image processing and various other domains. The main disadvantage 
in Switching median filters are known to outperform standard median filters in the removal of 
impulse noise due to their capability of filtering candidate noisy pixels and leaving other pixels 

intact. The boundary discriminative noise detection (BDND) is one powerful example in this 
class of filters. Certain issues in  BDND algorithms are evaluated and enhanced by increasing the 

window size of the filter. In this project, we propose  modifications to the filtering step of the 
BDND algorithm by increasing the window size one step higher to existing size to address these 
issues. Experimental evaluation shows the effectiveness of the proposed modifications in 

producing sharper images than the BDND algorithm. The noise elimination with around 90% of 
noise has been proposed and implemented using MATLAB 7.12 using image processing tool 

box.  
 
INTRODUCTION 

Image noise is undesired variation in pixel 

intensity values in a captured or transmitted 
image. Images captured with digital cameras 

or conventional film cameras or any other 
image sensor will pick up noise from variety 
of sources. Imperfect instruments, problems 

with the data acquisition process, interfering 
natural phenomena, transmission errors and 

compression can all introduce image noise 
and degrade the image quality. Image noise 
is an unavoidable side-effect during image 

capture. It is a phenemenon that no 
photographer can ignore. Even if noise is not 

clearly visible in a picture, some kind of 
image noise is bound to exist.  

In digital images, noise corrupts the smooth 

surface with non-uniform specks, thereby 
degrading the image quality to greater 

extent. Various factors like lighting 
conditions, sensitivity setting in the camera, 
exposure time and temperature produce 

random variation of brightness or color 
information in images. The following is a 

noisy image with excessive random noise.  

Image denoising is the process of removing 
noise from images. It has remained a 
fundamental problem in the field of image 

processing. Digital images play an important 
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role in daily life applications like satellite 

television, magnetic resonance imaging, 
computer tomography, geographical 

information systems, astronomy and many 
other research fields. While we cannot 
completely avoid image noise, we can 

certainly reduce them. The image noise is 
removed usually by image smoothing 

operation. 

There are two basic approaches to image 
denoising, namely spatial filtering and 
transform domain filtering. Spatial filters 

operate on a set of pixels related to a given 
pixel, usually by a sliding window. The 

window (or kernel) is usually square but can 
be any shape. Transform domain filters, in 
general, change the basis of signal space to 

aid some processing on the image data. 
Examples of transform domain filtering are 

fourier transform and wavelet transform. 

Median Filter 

The median-filter is also a sliding-window 
spatial filter, but the center value in the 

window is replaced by median (middle) of 
all the pixel values in the window. It is a 
more robust method than mean filter, 

because it is particularly effective in 
preserving the sharp edges in the image. 

Many variations to median filter are 
proposed such as weighted median filter, 
relaxed median filter, etc. The following 

image shows the median-filtered version of 
above noisy image (5 iterations).  

An ideal denoising procedure requires a 

prior knowledge of noise, whereas a 
practical procedure may not have the 
required information about the noise model. 

More advanced image-denoising methods 
have been developed and it remains a 

continous field of research in signal 

processing. Many latest digital cameras have 
employed some noise removal techniques 

based on the light sensitivity during image 
and video capture.  
 

EXISTING SYSTEM 

• Boundary discriminative noise 
detection is done with a window size 

of 13x13 size. 

• 80%noise is added and tested for 

both monochrome and color images.  

 

A quite interesting switching median filter is 

the boundary discriminative noise detection 
(BDND) filter that is proposed in [26]. The 

BDND filter is proven to operate efficiently 
when compared to other filters, even under 
high noise densities (up to 90%). Being a 

switching-based median filter, the BDND 
algorithm filters the noisy image in two 

steps. The first step is essentially a noise 
detection step which is based on clustering 
the pixels in the image in a localized 

window into three groups, namely; lower 
intensity impulse noise, uncorrupted pixels, 

and higher intensity impulse noise. The 
clustering is based on defining two 
boundaries using the intensity differences in 

the ordered set of the pixels in the window. 
The pixel is classified as uncorrupted if it 

belongs to the middle cluster. Otherwise it is 
a noisy pixel. This noise detection 
mechanism showed impressive detection 

accuracy under different impulse noise 
models. 

Once the noise map is determined, the 
second step is the filtering step, which is 

supposed to replace the noisy pixel with an 
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estimate of its original value. This step is 

applied on the identified noisy pixels only. 
The filtering is essentially a median filtering 

operation that is applied on the uncorrupted 
pixels found in the filtering window. The 
critical parameter that is required to be 

defined in the filtering step of the BDND 
algorithm is the size of the filtering window. 

The size of this window is determined as 
follows. A window of size 3 × 3 is used as 
initial size for the filtering window. If the 

number of uncorrupted pixels in the window 
is less than half the window size, then the 

window is expanded outward by one pixel in 
all directions. This is repeated until the 
number of uncorrupted pixels in the window 

is greater than or equal half the number of 
pixels in the window or the current window 

size is less than or equal a maximum 
window size. The maximum window size of 
the condition is ignored and the window is 

expanded if no uncorrupted pixels are found. 
In this case, window expansion is repeated 

until one uncorrupted pixel is found. 
Basically, this step is an adaptation from the 
filtering process and is reported to perform 

well even under high noise densities.The 
BDND filter is proven to operate effectively 

under different impulse noise models. 
However, two main observations can be 
made about its filtering step. First, 

expanding the window until the number of 
uncorrupted pixels is at least half the 

number of pixels in the window may impose 
additional blurring in the output image. The 
impact of this is clearly noticeable under 

high noise densities. Second, the filtering 
step relies on computing the median value of 

the uncorrupted pixels found in the window 
without any regard to the spatial relationship 
of these pixels to the noisy pixel, and the 

deviation of the pixels’ intensities from the 
median value. This also affects the quality 

and the sharpness of the edges in the filtered 

image.  

The first observation is related to the way 
filtering is performed in the BDND 
algorithm which starts by using a 3 × 3 

filtering window that is centered on the 
noisy pixel. However, the size of this 

window is considered insufficient for 
filtering under two conditions: i) the number 
of uncorrupted pixels Nu is less than half of 

the number of pixels in the window Nh, 
where Nh = 1/2 (WF ×WF) and WF is the 
window width, ii) if the number of 

uncorrupted pixels is zero. In case any of 
these conditions is violated for the current 

window, the window is expanded outward 
by one pixel in all directions. For the first 
condition, expansion is allowed as long as 

the size of the window is less than or equal 
to a maximum window size of Wmax 

×Wmax. Such approach in expanding the 
filtering window could be useful in 
providing a better estimate for the value of 

the noisy pixel. However, the strict 
condition of requiring the number of 

uncorrupted pixels to be greater than half the 
number of pixels in the window is easily 
violated under high noise densities. Thus, 

with high noise densities the filtering 
window is expected to be expanded and 

most likely it will reach the maximum size. 
The direct impact on increasing the window 
size is the possible loss of correlation 

between the pixel values inside the filtering 
window. This may directly affect the value 

that replaces the noisy pixel, which may lead 
to blurring and unnecessary distortion in the 
filtered image. 

To demonstrate the idea, consider the 5 × 5 

image shown in Fig. 1(a), which contains an 
edge along the 45° diagonal that separates 
between two smooth regions. Suppose that 
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this image is corrupted with 60% impulse 

noise as shown in Fig. 1(b), with the noisy 
pixels indicated by (*). These noisy pixels 

are assumed to be detected reliably by the 
detection step of the BDND algorithm. 
When the filtering step of the BDND 

algorithm is applied on the central pixel with 
a 3 × 3 window, then the set of uncorrupted 

pixels Vu in the window is simply {18, 20, 
151}. This implies that Nu is 3, which is less 
than half the number of pixels in the window 

(Nh = 4.5). This violates the first condition 
that is imposed on the size of the filtering 

window, since Nu is less than Nh. If Wmax 
is set to 3, then the filtering window is 
expanded to 5 × 5 since WF equals Wmax. 

Given this new window, the set of 
uncorrupted pixels Vu is {18, 20, 20, 21, 22, 

151, 151, 152, 152, 153}. This means that 
the number of uncorrupted pixels Nu is 10, 
which still less than half the window size 

(Nh = 12.5). Thus, the condition is violated 
again. However, the current window size is 

greater than Wmax, so window expansion 
stops. Of course, the second condition for 
window expansion is false since the number 

of uncorrupted pixels is not zero. 
Consequently, the filtered value of the pixel 

under consideration Xij is replaced by a new 
value Yij, which is simply the median of the 
uncorrupted pixels found in the filtering 

window using 

 

 

For the example image given in Fig. 1(b), 

this implies that the output value for the 
center pixel after filtering is 86, which is far 

away from the original pixel value. 

Additionally, this implies that the edge 

position between the two regions is 
displaced by one pixel. 

The main reason for such a problem in the 
BDND algorithm results from the condition 

imposed on expanding the filtering window 
which requires the number of uncorrupted 

pixels to be at least half the window size. 
However, such requirement is hard to satisfy 
under high noise densities. Actually, 

expanding the window in such circumstance 
may not solve the problem since the number 
of required uncorrupted pixels increases 

nonlinearly when the window is expanded. 
As a result, the maximum window size is 

usually reached with high noise densities, 
which in turn results in additional blurring 
and edge displacement in the filtered image. 

In order to address this problem, we propose 

the following modification to the window 
expansion process in the BDND algorithm. 
Basically, the condition is modified to take 

into consideration the estimated noise 
density P that is determined 

from the detection step of the algorithm and 
the total number of pixels NT in the filtering 

window, such that while the number of 
uncorrupted pixels Nu is less than 

1/2(1−P)NT and WF is less than or equal to 
Wmax, then the filtering window is 
expanded by one pixel outward in all 

directions. The term (1-P) basically is the 
percentage of uncorrupted pixels that are  

expected to be found in the filtering 
window. Including this term in the condition 
makes it adaptive to the noise density. In 

other words, when the noise density 
increases, the condition is loosened since the 

expected number of uncorrupted pixels 
decreases. This in turn reduces the occasions 
of window expansion. This is unlike the 
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BDND algorithm that uses a fixed threshold 

of 1/2(WF ×WF) regardless of the noise 
density. 

As a matter of fact, this is hard to achieve 
with high noise densities and small 

windows. 

PROPOSED SYSTEM 

 

• An Enhanced BDND algorithm with 
15x15 window size.  

• An adaptive switched median filter is 

incorporated in the existing system.  

• This may increase the denoising 
time. But this is efficient.  Because, 
we add 90% of the noise and observe 

the performance of the proposed 
system  

 

 

Figure 1. Block diagram of the existing system 

In our proposed method the noise estimation 
is done with linear regression and the filter 

window is increased to 15x15. This method 
is likely to give a better PSNR value in our 

sequence of works as mentioned in the 
above block diagram. 

LINEAR REGRESSION METHOD TO 

ESTIMATE NOISE BY CURVE 

FITTING 

A large number of procedures have been 
developed for parameter estimation and 

inference in linear regression. These 
methods differ in computational simplicity 

of algorithms, presence of a closed-form 
solution, robustness with respect to heavy-

tailed distributions, and theoretical 
assumptions needed to validate desirable 
statistical properties such as consistency and 

asymptotic efficiency. 

Some of the more common estimation 
techniques for linear regression are 

summarized below. 

ORIGINAL 
IMAGE 

NOISE 
ADDITION  

RGB LAYER 
SEPERATION 

GRAY 
CONVERSION 

WINDOWING 

DETEC TIO N OF 
NOIES AND  NOW 

NOISE PIXELS  

REPLACING 
NOISY PIXELS 
WITH MEDIAN  

INCREASE THE 
WNDOWN SIZE 

UPTO 15X15 

LAYER 
COMBINING 

RESTORED 

COLOR 
IMAGE  

PSNR 
CALCULATION 

http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Consistent_estimator
http://en.wikipedia.org/wiki/Efficiency_%28statistics%29


INTERNATIO NAL JOURNAL O F MERGING TECHNOLOGY AND    ADVANCED RESEARCH IN COMPUTING 

                                                                                                            ISSN: 2320-1363 

   6 
                                                               

 

Least-squares estimation and related 

techniques 

 Ordinary least squares (OLS) is the 
simplest and thus most common 

estimator. It is conceptually simple 
and computationally straightforward. 
OLS estimates are commonly used to 

analyze both experimental and 
observational data. 

The OLS method minimizes the sum 
of squared residuals, and leads to a 
closed-form expression for the 

estimated value of the unknown 
parameter β:  

 

The estimator is unbiased and 
consistent if the errors have finite 
variance and are uncorrelated with 

the regressors[7]  

 

It is also efficient under the 

assumption that the errors have finite 
variance and are homoscedastic, 

meaning that E[εi
2|xi] does not 

depend on i. The condition that the 

errors are uncorrelated with the 
regressors will generally be satisfied 
in an experiment, but in the case of 

observational data, it is difficult to 
exclude the possibility of an omitted 

covariate z that is related to both the 
observed covariates and the response 
variable. The existence of such a 

covariate will generally lead to a 
correlation between the regressors 

and the response variable, and hence 
to an inconsistent estimator of β. The 

condition of homoscedasticity can 

fail with either experimental or 
observational data. If the goal is 

either inference or predictive 
modeling, the performance of OLS 
estimates can be poor if 

multicollinearity is present, unless 
the sample size is large. 

In simple linear regression, where 

there is only one regressor (with a 
constant), the OLS coefficient 
estimates have a simple form that is 

closely related to the correlation 
coefficient between the covariate and 

the response. 

 Generalized least squares (GLS) is 
an extension of the OLS method, that 
allows efficient estimation of β when 

either heteroscedasticity, or 
correlations, or both are present 

among the error terms of the model, 
as long as the form of 
heteroscedasticity and correlation is 

known independently of the data. To 
handle heteroscedasticity when the 

error terms are uncorrelated with 
each other, GLS minimizes a 
weighted analogue to the sum of 

squared residuals from OLS 
regression, where the weight for the 

ith case is inversely proportional to 
var(εi). This special case of GLS is 
called "weighted least squares". The 

GLS solution to estimation problem 
is  

 

where Ω is the covariance matrix of 
the errors. GLS can be viewed as 

applying a linear transformation to 

http://en.wikipedia.org/wiki/Ordinary_least_squares
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Observational_study
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
http://en.wikipedia.org/wiki/Bias_of_an_estimator
http://en.wikipedia.org/wiki/Consistent_estimator
http://en.wikipedia.org/wiki/Linear_regression#cite_note-7
http://en.wikipedia.org/wiki/Efficiency_%28statistics%29
http://en.wikipedia.org/wiki/Homoscedasticity
http://en.wikipedia.org/wiki/Multicollinearity
http://en.wikipedia.org/wiki/Simple_linear_regression
http://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://en.wikipedia.org/wiki/Generalized_least_squares
http://en.wikipedia.org/wiki/Heteroscedasticity
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the data so that the assumptions of 

OLS are met for the transformed 
data. For GLS to be applied, the 

covariance structure of the errors 
must be known up to a multiplicative 
constant. 

 Percentage least squares focuses on 

reducing percentage errors, which is 
useful in the field of forecasting or 

time series analysis. It is also useful 
in situations where the dependent 
variable has a wide range without 

constant variance, as here the larger 
residuals at the upper end of the 

range would dominate if OLS were 
used. When the percentage or 
relative error is normally distributed, 

least squares percentage regression 
provides maximum likelihood 

estimates. Percentage regression is 
linked to a multiplicative error 
model, whereas OLS is linked to 

models containing an additive error 
term.[8] 

 Iteratively reweighted least squares 
(IRLS) is used when heteroscedasticity, 
or correlations, or both are present 

among the error terms of the model, but 
where little is known about the 

covariance structure of the errors 
independently of the data.[9] In the first 
iteration, OLS, or GLS with a 

provisional covariance structure is 
carried out, and the residuals are 

obtained from the fit. Based on the 
residuals, an improved estimate of the 
covariance structure of the errors can 

usually be obtained. A subsequent GLS 
iteration is then performed using this 

estimate of the error structure to define 
the weights. The process can be iterated 
to convergence, but in many cases, only 

one iteration is sufficient to achieve an 

efficient estimate of β.[10][11] 
 Instrumental variables regression (IV) 

can be performed when the regressors 
are correlated with the errors. In this 
case, we need the existence of some 

auxiliary instrumental variables zi such 
that E[ziεi] = 0. If Z is the matrix of 

instruments, then the estimator can be 
given in closed form as  

 
 

PSNR 

The phrase peak Signal-to-Noise Ratio, 

often abbreviated PSNR, is an engineering 
term for the ratio between the maximum 
possible power of a signal and the power of 

corrupting noise that affects the fidelity of 
its representation. Because many signals 

have a very wide dynamic range, PSNR is 
usually expressed in terms of the logarithmic 
decibel scale. 

It is most easily defined via the mean 

squared error (MSE). Given a noise- free 
m×n monochrome image I and its noisy 

approximation K, MSE is defined as: 

 

 

The PSNR is defined as: 

 
 

http://en.wikipedia.org/w/index.php?title=Percentage_least_squares&action=edit&redlink=1
http://en.wikipedia.org/wiki/Linear_regression#cite_note-8
http://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares
http://en.wikipedia.org/wiki/Heteroscedasticity
http://en.wikipedia.org/wiki/Linear_regression#cite_note-9
http://en.wikipedia.org/wiki/Linear_regression#cite_note-10
http://en.wikipedia.org/wiki/Linear_regression#cite_note-10
http://en.wikipedia.org/wiki/Linear_regression#cite_note-10
http://en.wikipedia.org/wiki/Instrumental_variables
http://en.wikipedia.org/wiki/Signal_%28information_theory%29
http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/Dynamic_range
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Mean_squared_error
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RESULTS 

 

Figure 2 : Denoised image 

 

Figure 3 : PSNR variations 

This work is highly suitable to  

• Satellite image communications 

• Internet image transfers. 

• For bio medical image processing 

• Used as a preprocessing scheme for all 

image segmentation and recognitions.  

Also this work has advantages such as 

• This algorithm tolerates upto 90% of the 

noise. 

• PSNR obtained in our algorithm is about 

30db. 

CONCLUSION 

In this work, a detailed study of BDND 

algorithm and modification in the BDND 
algorithm is carried out.  The expected value 

of PSNR is above 50 db, and we try to 
increase the noise level greater than 90% of 
salt and pepper noise, which is actually 80% 

in the existing work. Various reference 
papers had been analysed to compare our 
novel proposed method. This noise 

elimination work could be very promising 
method in all applications like defence 

communications and bio medical image 
processing. 
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